
Basic concepts and how to measure price
volatility

Carlos Martins-Filho

University of Colorado, Boulder and IFPRI

AGRODEP - Dakar, Senegal



Some fundamental assumptions

I Producers of agricultural commodities do not have market
power.

I Observed prices are realizations of stochastic variables.

I Hence, at any time period t, a collection of n observed past
prices can be represented by

{Pt−n, · · ·Pt−2,Pt−1}

Choosing, without loss of generality, t = n + 1 we have

{P1, · · · ,Pn−1,Pn}



A simple theoretical model

I Let c(y ; w) be a producer’s cost function, where y denotes
output and w denotes a vector of input prices

I Assume P has distribution given by FP with expected value
µP =

∫
pdFP(p) and variance σ2

P =
∫

(p − µP)2dFP(p)

I σP is called the “volatility” of P (it is just the square root of
the variance)

I Producers maximize short run profits by choosing output y∗

such that
µP = c ′(y∗; w) (1)

I Output cannot be instantaneously adjusted to price levels



Why do we care about volatility of prices?

I Suppose w.l.o.g. that for price P we have y > y∗

I lack of output adjustment produces a loss in profit given by

L = −Pdy +

∫ y

y∗
c ′(α; w)dα where dy = y − y∗ (2)

I For algebraic convenience take c ′(y ; w) = b(w) + 2c(w)y
where b(w) and c(w) are constants depending on input prices

I Expected losses are given by

E (L) =
1

4c(w)
E (P − µP)2 =

1

4c(w)
σ2

P (3)



Equation (3) suggests the following benefits from reduced price
volatility:

1. Smaller price volatility reduces expected loss

2. Since choosing output to maximize profit equates marginal
cost to price, there is optimal allocation of inputs into the
agricultural sector. Hence, misallocation is reduced by
reducing price volatility. Large values of σ2

P may imply
increased misallocation of resources.



Some basic questions regarding statistical modeling of
prices

I Do the stochastic variables P1,P2, · · · ,Pn have the same
distribution?

I Does knowledge of the value of Pn−1 help us forecast or
predict Pn?

I Can we construct statistical models that help us understand
the evolution of prices through time?



Returns

I Because prices can be measured in different units, it will be
convenient to adopt an unit free measure.

I Assuming that Pt ∈ (0,∞) the returns over 1 period are
normally measured in one of the following ways:

1. Net returns: Rt = Pt−Pt−1

Pt−1
∈ (−1,∞)

2. Gross returns: At = 1 + Rt ∈ (0,∞)
3. log returns: rt = log(1 + Rt) = logPt − logPt−1 ∈ (−∞,∞).

Note that:

1. if prices do not change from period t − 1 to period t all of
these measures of return take the value zero.

2. if there is a large change from period t − 1 to period t then all
of these measures of return take on large values.

3. “High prices” and “high price variability” are very different
concepts that do not preclude each other.



A simple model

I Suppose {rt}t=1,2,··· is an independent and identically
distributed sequence of returns and assume

rt = log
Pt

Pt−1
∼ N(µ, σ2)

or
rt = µ+ σut

where {ut}t=1,2,··· forms an independent sequence with
ut ∼ N(0, 1).

I µ is called the expected value of rt and σ2 is called the
variance of rt . Take the square root to obtain volatility.

I It is easy to show that under this assumption on log-returns

E (log Pt) = log P0 + tµ and V (log Pt) = tσ2

where P0 is an “initial” value for price.



Figure: Estimated 95 % conditional quantile (blue) and realized log
returns for soybeans (green)



Some questions

From the visual inspection of the graph, we ask:

I Does it seem that the expected value of returns is constant
(µ)?

I Does it seem that variance (volatility) of returns (σ2) is
constant?

I Is the return distribution symmetric?

I Relative to a stochastic variable with a normal distribution, is
the occurrence of extreme returns (too large or too small)
more or less likely relative to the occurrence of “typical
returns”?

I Is it possible to ascertain that some returns (or price
variations from period t − 1 to t) are in some sense too big or
abnormally large?



A more sophisticated statistical model

We generalize the model described above as follows:

rt = m(rt−1, rt−2, · · · , rt−H ,wt.) + h1/2(rt−1, rt−2, · · · , rt−H ,wt.)ut

where

I wt. is a 1× K dimensional vector of random variables

I ut are iid with distribution given by Fu, E (ut) = 0 and
V (ut) = 1

I For simplicity, we put Xt. = (rt−1, rt−2, · · · , rt−H ,wt.) a
d = H + K -dimensional vector and assume that

m(Xt.) = m0 +
d∑

a=1

ma(Xta), and h(Xt.) = h0 +
d∑

a=1

ha(Xta)



A more sophisticated statistical model

Note the following immediate consequences of the model:

I E (rt |Xt.) = m(rt−1, rt−2, · · · , rt−H ,wt.) 6= µ

I V (rt |Xt.) = h(rt−1, rt−2, · · · , rt−H ,wt.) 6= σ2

I The model structure permits a skewed conditional distribution
of returns

I The model structure permits a leptokurtic or platykurtic
conditional distribution.



A framework for identifying abnormally high returns

The α-quantile for the conditional distribution of rt given Xt.,
denoted by q(α|Xt.) is given by

q(α|Xt.) ≡ F−1(α|Xt.) = m(Xt.) + (h(Xt.))1/2q(α). (4)

I This conditional quantile is the value for returns that is
exceeded with probability 1− α given past returns (down to
period t − H) and other economic or market variables (wt.)

I Large (positive) log-returns indicate large changes in prices
from periods t − 1 to t and by considering α to be sufficiently
large we can identify a threshold q(α|Xt.) that is exceeded
only with a small probability α.

I Realizations of rt that are greater than q(α|Xt.) are indicative
of unusual price variations given the conditioning variables.



Estimation

I First, m and h are estimated by m̂(Xt.) and ĥ(Xt.) given the
sample {(rt ,Xt1, · · · ,Xtd)}nt=1

I Second, standardized residuals ε̂t = rt−m̂(Xt.)

ĥ(Xt.)1/2
are used in

conjunction with extreme value theory to estimate q(α).

The exceedances of any random variable (ε) over a specified
nonstochastic threshhold u, i.e, Z = ε− u can be suitably
approximated by a generalized pareto distribution - GPD (with
location parameter equal to zero) given by,

G (x ;β, ψ) = 1−
(

1 + ψ
x

β

)−1/ψ

, x ∈ D (5)

where D = [0,∞) if ψ ≥ 0 and D = [0,−β/ψ] if ψ < 0.



Estimation

1. Using ε̂1:n ≥ ε̂2:n ≥ ... ≥ ε̂n:n and obtain k < n excesses over
ε̂k+1:n given by {ε̂j :n − ε̂k+1:n}kj=1

2. It is easy to show that for α > 1− k/n and estimates β̂ and
ψ̂, q(α) can be estimated by,

q̂(α) = ε̂k+1:n +
β̂

ψ̂

((
1− α
k/n

)−ψ̂
− 1

)
. (6)



Empirical exercise

For this empirical exercise we use the following model

rt = m0 + m1(rt−1) + m2(rt−2) + (h0 + h1(rt−1) + h2(rt−2))1/2 εt .
(7)

I For each of the series of log returns we select the first
n = 1000 realizations (starting January 3, 1994) and forecast
the 95% conditional quantile for the log return on the
following day. This value is then compared to realized log
return.

I This is repeated for the next 500 days with forecasts always
based on the previous 1000 daily log returns. We expect to
observe 25 returns that exceed the 95% estimated quantile



Soybeans: We expect 25 violations, i.e., values of the returns that
exceed the estimated quantiles. The actual number of forecasted
violations is 21 and the the p-value is 0.41, significantly larger than
5 percent, therefore providing evidence of the adequacy of the
model.



Figure: Estimated 95 % conditional quantile and realized log returns for
soybeans



Hard wheat: We expect 25 violations, i.e., values of the returns
that exceed the estimated quantiles. The actual number of
forecasted violations is 21 and the the p-value is 0.41, significantly
larger than 5 percent, therefore providing evidence of the adequacy
of the model.



Figure: Estimated 95 % conditional quantile and realized log returns for
hardwheat



Daily results are available at:

I http://www.foodsecurityportal.org/

In particular:

I Policy Analysis Tools

http://www.foodsecurityportal.org/
http://www.foodsecurityportal.org/policy-analysis-tools

